Calcium sensors for molecular fMRI

PI: Alan Jasanoff
Massachusetts Institute of Technology
Title: "Calcium sensors for molecular fMRI"
BRAIN category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Jasanoff's team will synthesize calcium-sensing contrast agents that will allow functional magnetic resonance imaging (fMRI) scans to reveal activity of individual brain cells

High-Density Recording Microelectrodes

PI: Tim Gardner, Laboratory of neural circuit formation
Institution: Boston University (Charles River Campus)
Title: "High-Density Recording and Stimulating Microelectrodes"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Gardner and his colleagues will develop ultrathin electrodes that minimize tissue damage and are designed for long-term recording of neural electrical activity.

Modular nanophotonic probes

Principal Investigator: Michael Roukes
Caltech Neuroscience
Title: "Modular nanophotonic probes for dense neural recording at single-cell resolution"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Roukes and his team propose to build ultra-dense, light-emitting and -sensing probes for optogenetics, which could simultaneously record the electrical activity of thousands of neurons in any given region of the brain.

Diamond Electrodes for Measurement

Principal Investigator: Kendall H Lee
Mayo Clinic Rochester
Title: "Neurotransmitter Absolute Concentration Determination with Diamond Electrode"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Kendall and his colleagues will develop diamond-coated electrodes to measure concentrations of the brain chemical dopamine more accurately and over long periods of time in the brain.

Genetic sensors for biogenic amines

Principal Investigator: Lin Tian
UC Davis Neuroscience
Title: " Genetically encoded sensors for the biogenic amines: watching neuromodulation in action"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Tian and her colleagues will create sensors that will allow researchers to see how molecules like dopamine, norepinephrine and serotonin regulate activity of neural circuits and behavior in living animals.

Optogenetic mapping of synaptic activity

Principal Investigator: John Yu-Luen Lin
Neuroscience at UCSD
Title: "Optogenetic mapping of synaptic activity and control of intracellular signaling"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Lin's team will create molecules that, when they are triggered by a pulse of light, allow scientists to test for communication between neurons in specific circuits of the brain.

Modular systems measuring brain activity

Principal Investigator: Loren M Frank
Sandler Neurosciences Center, UC San Francisco
Title: " Modular systems for measuring and manipulating brain activity"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Frank and his colleagues will engineer a next-generation, all-in-one neural recording and stimulating system, which can simultaneously monitor thousands of neurons in the brain for several months while also delivering drugs, light or electrical pulses.

Optoelectrodes for Local Circuit Analysis

Principal Investigator: Euisik Yoon
UMich Neuroscience
Title: " Modular High-Density Optoelectrodes for Local Circuit Analysis"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

In this project, Dr. Yoon's team will make devices for optogenetics, a technique that enables scientists to turn neurons on and off with flashes of light, more precise and diverse by integrating multiple light sources in such a way as to enable the control of specific neuronal circuits.

Deep Photoacoustic Tomography

Principal Investigator: Lihong Wang
Washington University
Title: "Fast High-Resolution Deep Photoacoustic Tomography of Action Potentials in Brains"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Wang and his collaborators will test a way to image the electrical activity of neurons deep inside the brain, using a variation on ultrasound imaging he invented called photoacoustic tomography.

Genetically encoded reporters

Principal Investigator: Kit S. Lam
UC Davis Center for Neuroscience
Title: "Genetically encoded reporters of integrated neural activity for functional mapping of neural circuitry"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Lam's team plans to develop fluorescent sensors that will mark ion channels, molecules that help control information flow in the brain, and enable scientists to observe the neurons that are activated during a specific behavior, such as running.

NIH Webpages

Time-Reversal Optical Focusing

Principal Investigator: Changhuei Yang
Caltech Neuroscience
Title: Time-Reversal Optical Focusing for Noninvasive Optogenetics
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Yang's team plans to develop a light and sound system that will noninvasively shine lasers on individual cells deep within the brain and activate light-sensitive molecules to precisely guide neuronal firing.

Skip to toolbar