Schnitzer Group – Stanford

Principal Investigator: Mark J Schnitzer
Stanford Neurosciencs Institute

The Schnitzer Group has three major research efforts: Development and application of fiber-optic, micro-optic, and nanophotonic imaging techniques for studies of learning and memory in behaving mice and for clinical uses in humans; In vivo fluorescence imaging and behavioral studies of hippocampal-dependent cognition and learning; and Development of high-throughput, massively parallel imaging techniques for studying brain function in large numbers of Drosophila concurrently

Laboratory of Neural Circuit Dynamics – Zurich

Principal Investigator: Fritjof Helmchen
Zurich Brain Research Institute

To study neural circuit function our research is focused on advancing and applying in vivo high-resolution imaging methods, with a particular emphasis on neocortical microcircuitry. The lab's specific goals are to reveal principles of single-cell and local network computation and to decipher the neural codes governing information processing as well as circuit plasticity.

Xu Research Group – Cornell

Principal Investigator, Chris Xu
Cornell University

Xu Research Group has two main thrusts: biomedical imaging and fiber optics. The Group is exploring new concepts and techniques for in vivo imaging deep into scattering biological specimens, such as mouse brain; developing new medical endoscopes for non-invasive real-time diagnostics of tissues without any exogenous contrast agent and novel optical fibers and fiber-based devices for biomedical imaging and optical communications.

Kramer Lab – Stanford

Principal Investigator: Richard Kramer
UC Berkeley Helen Wills Neuroscience Institute

Kramer Lab studies utilize novel chemical reagents to modify the function of ion channels and synapses. This Chemical-Biological approach is designed to allow non-invasive optical sensing and optical manipulation of channels and synapses in the nervous system. One major goal of this research is to develop the technology for restoring vision in degenerative blinding diseases.

John B. Pierce Laboratory – Yale

Fellow: Vincent Allen Pieribone
Yale Interdepartmental Neuroscience Program

The John B. Pierce Laboratory is a nonprofit, independent research institute that is formally affiliated with Yale University. The Laboratory has a long and distinguished history as a leading center for the study of physiological regulatory systems such as those that maintain body temperature, respiration, body fluids, and metabolism within healthy limits.

Nedivi Lab – MIT

Principal Investigator, Elly Nedivi
MIT Neuroscience

Plasticity is a prominent feature of brain development, and in the adult underlies learning and memory and adaptive reorganization of sensory maps. The Nedivi lab, part of the Picower Institute for Learning and Memory, studies the cellular mechanisms that underlie activity-dependent plasticity in the developing and adult brain through studies of neuronal structural dynamics, identification of the participating genes, and characterization of the proteins they encode.

Skip to toolbar