Holographic optogenetics and olfactory coding

Principal Investigator: Dmitry Rinberg
NYU Neuroscience Institute
Title: "Behavioral readout of spatiotemporal codes dissected by holographic optogenetics"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Rinberg's team aims to understand how the brain turns odors into nerve signals by activating and recording neurons in the olfactory bulbs of mice as they detect a variety of odors.

Mapping Sensory-Motor Pathways

Principal Investigator: Michael Dickinson
Caltech Neuroscience
Title: "Integrative Functional Mapping of Sensory-Motor Pathways"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Dickinson will lead an interdisciplinary team to study how the brain uses sensory information to guide movements, by recording the activity of individual neurons from across the brain in fruit flies, as they walk on a treadmill and see and smell a variety of sights and odors

Integrated approach to visual neuroscience

PI: Sebastian Seung, Princeton University
Title: "Vertically integrated approach to visual neuroscience: microcircuits to behavior"
BRAIN category: Understanding Neural Circuits

Dr. Seung and colleagues will use state-of-the-art genetic, electrophysiological, and imaging tools to map the connectivity of the retina, the light-sensing tissue in the eye. The goal is to delineate all the retina's neural circuits and define their specific roles in visual perception and behavior.

Neural circuits in zebrafish

Principal Investigator: Florian Engert
Program in Neuroscience @Harvard
Title: "Neural circuits in zebrafish: form, function and plasticity"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Engert's team will combine a wide array of cutting-edge neuroscience techniques to watch the entire brain activity of a see-through fish while it swims, and to make detailed maps of its brain circuitry.

Neural circuit dynamics in working memory

Principal Investigator: Carlos D Brody
Princeton Neuroscience Institute
Title: "Mechanisms of neural circuit dynamics in working memory"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Brody and his colleagues will study the underlying neuronal circuitry that contributes to short-term "working" memory, using tools to record circuit activity across many brain areas simultaneously while rodents run on a track-ball through virtual mazes projected onto a screen.

Circuitry Underlying Memory replay

Principal Investigator: Ivan Soltesz
UC Irvine Neuroscience
Title: "Towards a Complete Description of the Circuitry Underlying Memory replay"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Soltesz's team will combine computer brain modeling and large-scale recordings of hundreds of neurons to understand how the brain generates sharp-wave-ripples, a neuronal activity pattern essential for learning and memory.

Connectivity of brain stem circuits

Principal Investigator: David Kleinfeld
UCSD Neuroscience
Title: "Revealing the connectivity and functionality of brain stem circuits"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Kleinfeld and his colleagues will use a variety of tools and techniques to create detailed maps of circuits in the brainstem, the region that regulates many life-sustaining functions such as breathing and swallowing, and match the circuits to actions they control.

Patterned activity and codes for behavior

Principal Investigator: John Maunsell
Neuroscience at University of Chicago
Title: "The role of patterned activity in neuronal codes for behavior"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Maunsell's team will explore how large populations of neurons process visual information, using a newly developed light stimulation technique to induce brain cell activity in the visual cortex of mice.

Crowd coding in the brain

Principal Investigator: Patrick Kanold
UMD Neuroscience and Cognitive Science
Title: "Crowd coding in the brain: 3D imaging and control of collective neuronal dynamics"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Kanold and his team propose cutting edge methods to stimulate neurons at different depths in the auditory cortex, and will use new computational methods to understand complex interactions between neurons in mice while testing their ability to hear different sounds.

Cortical circuits and information flow

Principal Investigator: Mriganka Sur
MIT Neuroscience
Title: "Cortical circuits and information flow during memory-guided perceptual decisions"
BRAIN Category:

Dr. Sur and his team will combine a number of cutting-edge, large-scale imaging and computational techniques to determine the exact brain circuits involved in generating short term memories that influence decisions.

Skip to toolbar